Get Involved
-
Magnetic Resonance Elastography in Glioma: Exploring Tumor Stiffness and Adhesion
this study will investigate the relationship between tumor stiffness and adhesion in gliomas using MRE. By utilizing preoperative MRE and Intraoperative neuronavigation, followed by comprehensive molecular pathology analysis, we aim to explore the correlation of tumor stiffness and adhesion with molecular and genetic characteristics of gliomas. Additionally, the predictive value of MRE in terms of pathological staging and prognosis will be determined. This research may pave the way for improved clinical decision-making, personalized treatment approaches, and more accurate clinical trials for glioma patients.
-
Magnetic Resonance Imaging for Improving Knowledge of Brain Tumor Biology in Patients With Resectable Glioblastoma
This clinical trial uses a type of imaging scan called magnetic resonance imaging (MRI) to study brain tumor biology in patients with glioblastoma that can be removed by surgery (resectable). Malignant gliomas are the second leading cause of cancer mortality in people under the age of 35 in the United States. Glioblastoma is a type of malignant glioma with very poor patient prognosis. There are currently only about 3 drugs approved by the Food and Drug Administration (FDA) for the treatment of glioblastoma, one of them being administration of bevacizumab, which is very expensive. It is the most widely used treatment for glioblastoma with dramatic results. However, previous clinical...
-
Magnetic Resonance Imaging-guided Adaptive Radiotherapy for Large Brain Metastases
This study is an ambispective cohort study to evaluate the displacement and deformation of large brain metastases (BM) treated with magnetic resonance imaging-guided adaptive radiotherapy (MRIgART)
-
Magnetic Resonance (MR) Imaging to Determine High Risk Areas in Patients With Malignant Gliomas and to Design Potential Radiation Plans and to Examine Metabolite Changes in Gliomas and Other Solid Tumors
The researchers think that the use of advanced MR imaging may help people with this disease, because it may better predict areas within a malignant glioma (brain tumor) that are at a high risk of recurring. WeThe reserchers are doing this study to see whether this advanced imaging is a safe treatment that causes few or mild side effects in people with brain tumors.
-
Maintenance Obinutuzumab in Treating Patients With Central Nervous System Lymphoma Who Have Achieved a Complete or Partial Response
This randomized phase II trial studies how well obinutuzumab works as maintenance treatment in patients with central nervous system lymphoma who have achieved the disappearance of all signs of cancer in response to treatment (complete response) or a decrease in the size of a tumor, or in the extent of cancer in the body, in response to treatment (partial response). Immunotherapy with obinutuzumab, may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread.
-
MAPK Inhibition Combined With Anti-PD1 Therapy for BRAF-altered Pediatric Gliomas
Pediatric gliomas harboring BRAF-alterations, commonly BRAFV600 mutation or KIAA1549-BRAF fusion, are currently treated with either chemotherapy or mitogen activated protein kinase (MAPK) inhibitors, such as, dabrafenib and/or trametinib. Unfortunately, some BRAF-altered gliomas can progress or have rebound growth after discontinuation of therapy. Data from BRAFV600E-mutant melanoma has shown potential synergy between MAPK inhibition and anti-programmed cell death 1 (anti-PD1) checkpoint blockade. Anti-PD1 therapy, such as, nivolumab can block the PD1 receptor on T cells, a marker of T cell exhaustion, allowing a continued or more robust anti-tumor immune response....
-
Mapping of Electrical Properties in the Brain
This study evaluates imaging methods for monitoring neural and electrical activity in the brain for improving clinical diagnosis.
-
Mass Response of Tumor Cells As a Biomarker for Rapid Therapy Guidance (TraveraRTGx)
The primary objective of this study, sponsored by Travera Inc. in Massachusetts, is to validate whether the mass response biomarker has potential to predict response of patients to specific therapies or therapeutic combinations using isolated tumor cells from various specimen formats including malignant fluids such as pleural effusions and ascites, core needle biopsies, fine needle aspirates, or resections.
-
Maximum Tolerated Dose, Safety, and Efficacy of Rhenium Nanoliposomes in Recurrent Glioma (ReSPECT)
This is a multi-center, sequential cohort, open-label, volume and dose escalation study of the safety, tolerability, and distribution of 186RNL given by convection enhanced delivery to patients with recurrent or progressive malignant glioma after standard surgical, radiation, and/or chemotherapy treatment. The study uses a modified Fibonacci dose escalation, followed by an expansion at the maximum tolerated dose (MTD) to determine efficacy. The starting absorbed dose is 1mCi in a volume of 0.660mL.
-
MC1R-targeted Alpha-particle Monotherapy and Combination Therapy Trial With Nivolumab in Adults With Advanced Melanoma
In this first-in human, phase I/IIa study, the safety and efficacy of [212Pb]VMT01, an alpha-particle emitting therapeutic agent targeted to melanocortin sub-type 1 receptor (MC1R) is being evaluated as a monotherapy and in combination with Nivolumab in subjects with unresectable and metastatic melanoma.