The purpose of a clinical trial is to determine the most effective and safest treatment for a disease. Clinical trial evaluation is a key step to translating research into new medicines that can provide better outcomes for patients. The performance of clinical trials is a vital component of U.S. Food and Drug Administration’s drug approval process, without which advances in therapeutics for brain tumor patients would not be possible. Often the lengthiest aspect of the drug approval process is finding people to participate in trials. The Clinical Trial Finder is intended to help raise awareness and increase participation in clinical trials to facilitate brain tumor research and accelerate the development of new drugs and treatments for patients.
Finding a Trial
To help you find clinical trials that may best suit your particular needs, please fill out the filter questions below. As a result of your search and after reviewing the details, if you are interested in learning more about a trial, identify the trial site nearest to your location and contact the site coordinator via email or phone. We also strongly recommend that you consult with your healthcare provider about the trials that may interest you and refer to our terms of service below.
The information returned from your search has been obtained from ClinicalTrials.gov, a service of the U.S. National Institutes of Health, providing information on publicly and privately supported clinical studies of human participants with locations in all 50 States and in 196 countries.
-
[11C]Acetate PET in Patients With Glioma
At each point that the patient will have [11C]-Acetate PET study, this will be compared with standard clinical MR imaging. Abbreviations: XRT - radiation therapy; TMZ - temozolomide (chemotherapy) Quantitative Image Data Analysis: The [11C]-Acetate uptake in tumor sites from images will be analyzed qualitatively by visual assessment, quantitatively using a standard uptake value (SUV) in the tumor relative to the contralateral normal brain, and the parameters obtained by compartmental modeling of dynamic data.
-
11C-Methionine PET as Prognostic Marker of Gliomas
This is a retrospective study that involves the revision of clinical, instrumental and pathologic data of an estimated cohort of maximum 145 patients with glioma treated with surgery with radical intent at our center.
-
131I-IPA + XRT as Treatment for Patients With Glioblastoma Multiforme
A multi-centre, open-label, single-arm, dose-finding phase I/II study to evaluate safety, tolerability, dosing schedule, and preliminary efficacy of carrier-added 4-L-[131I]iodo-phenylalanine (131I-IPA), administered as single or repetitive injections in patients with recurrent glioblastoma multiforme (GBM), concomitantly to 2nd line external radiation therapy (XRT) - IPAX-1
-
131I-Labeled MIBG for Refractory Neuroblastoma: A Compassionate Use Protocol
This is a compassionate use protocol to allow patients with advanced neuroblastoma palliative access to 131I-metaiodobenzylguanidine (131I-MIBG).
-
131I-Metaiodobenzylguanidine (131I-MIBG) Therapy for Relapsed/Refractory Neuroblastoma
This expanded access is the best available therapy/compassionate use designed to determine the palliative benefit and toxicity of 131I-MIBG in patients with relapsed/refractory neuroblastoma or metastatic pheochromocytoma who are not eligible for therapies of higher priority. Patients may receive a range of doses depending on stem cell availability and tumor involvement of bone marrow. Response rate, toxicity, and time to progression and death will be evaluated.
-
131I-MIBG Alone VS. 131I-MIBG With Vincristine and Irinotecan VS131I-MIBG With Vorinistat
This study will compare three treatment regimens containing metaiodobenzylguanidine (MIBG) and compare their effects on tumor response and associated side effects, to determine if one therapy is better than the other for people diagnosed with relapsed or persistent neuroblastoma.
-
131-I-MIBG Therapy for Refractory Neuroblastoma and Metastatic Paraganglioma/Pheochromocytoma
Metaiodobenzylguanidine (MIBG) is a substance that is taken up by neuroblastoma or pheochromocytoma/paraganglioma tumor cells. MIBG is combined with radioactive iodine (131 I) in the laboratory to form a radioactive compound 131 I-MIBG. This radioactive compound delivers radiation specifically to the cancer cells and causes them to die. The purpose of this research protocol is to provides a mechanism to deliver MIBG therapy when clinically indicated, but also to provide a mechanism to continue to collect efficacy and toxicity data that will be provided.
-
131I-omburtamab Radioimmunotherapy for Neuroblastoma Central Nervous System/Leptomeningeal Metastases
Children with a neuroblastoma diagnose and central nervous system (CNS)/leptomeningeal metastases will be given up to 2 rounds of intracerebroventricular treatment with a radiolabelled monoclonal antibody, 131I-omburtamab to evaluate efficacy and safety
-
177Lu-DTPA-Omburtamab Radioimmunotherapy for Recurrent or Refractory Medulloblastoma
Children and adolescents diagnosed with medullablastoma and with recurrent or refractory to frontline therapy will be treated with 177Lu-DTPA-omburtamab, which is a radioactive labelling of a murine monoclonal antibody targeting B7-H3.
-
177Lutethium - Peptide Receptor Radionuclide Therapy (Lu-PRRT) Plus Capecitabine Versus Lu-PRRT in FDG Positive, Gastro-entero-pancreatic Neuroendocrine Tumors
This is a randomized phase II, parallel group study. Patients with gastro-entero-pancreatic neuroendocrine tumors (GEP-NET) well differentiated G1 - G2 (ki67≤ 20%) and G3 (ki67≤ 50%), somatostatin receptor (SSR) positive and 18-FDG positive will be enrolled in the study and will be randomly assigned to 2 different arms: - Arm Lu-PRRT-Cap: oral low dose of capecitabine in association with Lu-PRRT (at 3.7 Gbq per cycle x 7 cycles) followed by long acting octreotide or lanreotide (SS-LAR); OR - Arm Lu-PRRT: Lu-PRRT (at 3.7 gigabecquerel (Gbq) per cycle x 7 cycles) followed by SS-LAR.