Get Involved
The purpose of a clinical trial is to determine the most effective and safest treatment for a disease. Clinical trial evaluation is a key step to translating research into new medicines that can provide better outcomes for patients. The performance of clinical trials is a vital component of U.S. Food and Drug Administration’s drug approval process, without which advances in therapeutics for brain tumor patients would not be possible. Often the lengthiest aspect of the drug approval process is finding people to participate in trials. The Clinical Trial Finder is intended to help raise awareness and increase participation in clinical trials to facilitate brain tumor research and accelerate the development of new drugs and treatments for patients.
Finding a Trial
To help you find clinical trials that may best suit your particular needs, please fill out the filter questions below. As a result of your search and after reviewing the details, if you are interested in learning more about a trial, identify the trial site nearest to your location and contact the site coordinator via email or phone. We also strongly recommend that you consult with your healthcare provider about the trials that may interest you and refer to our terms of service below.
The information returned from your search has been obtained from ClinicalTrials.gov, a service of the U.S. National Institutes of Health, providing information on publicly and privately supported clinical studies of human participants with locations in all 50 States and in 196 countries.
-
11C-methionine in Diagnostics and Management of Glioblastoma Multiforme Patients (GlioMET)
Glioblastoma multiforme (GBM) is the most common primary brain cancer. The treatment of GBM consists of a combination of surgery and subsequent oncological therapy, i.e. radiotherapy, chemotherapy, or combination of both at te same time. If post-operative oncological therapy involves irradiation, magnetic resonance imaging (MRI) is planned. Unfortunately, in some cases, a very early worsening (progression) or return (recurrence) of the disease is observed several weeks after the surgery, i.e. rapid early progression (REP). Radiotherapy planning is based on this MRI in all patients. However, a subset of patients with REP have a less ...
-
131I-TLX-101 for Treatment of Newly Diagnosed Glioblastoma (IPAX-2)
This is an open label, single arm, parallel-group, multicentre, and dose finding study to evaluate the safety of ascending radioactive dose levels of 131I-TLX101 administered intravenously in combination with best standard of care in newly diagnosed GBM patients.
-
177Lu-DOTA-EB-TATE in Untreated (Naïve) Adult Patients With Advanced, Well- Differentiated Neuroendocrine Tumors
This is a Phase I clinical trial to assess the safety and dosimetry profiles of 177Lu-DOTA-EB-TATE in patients with advanced, metastatic or inoperable, somatostatin receptor-positive, well-differentiated GEP-NETs.
-
177Lu-DOTA-TATE and Olaparib in Somatostatin Receptor Positive Tumours
This is a phase I study of 177Lu-DOTA-TATE in combination with the PARP-inhibitor olaparib for treatment of patients with somatostatin receptor positive tumours detected by 68Ga-DOTA-TATE/TOC PET. The combination of a PARP inhibitor that will specifically target the repair mechanism, with ionising radiation causing SSB's might overcome the repair dependent survival of the tumour cells, making them more sensitive to β-emission and increase the probability of tumour cell death.
-
177Lu-PP-F11N for Receptor Targeted Therapy and Imaging of Metastatic Thyroid Cancer.
The purpose of this study is to determine the use of 177Lu-PP-F11N for imaging and therapy of patients with advanced medullary thyroid carcinoma (MTC). 177Lu-PP-F11N is a gastrin analogon, binding to cholecystokinin-2 receptors. This receptors show an overexpression on more than 90 % of medullary thyroid carcinomas. In the pilot (phase 0) study investigators will correlate the tumour detection rate with the surgery and histology (proof of concept study). Furthermore, kidney protection and dosimetry studies will be performed in order to determine the kidney protection protocol and starting activity for the dose escalation study in...
-
177Lutetium-DOTATATE in Children With Primary Refractory or Relapsed High-risk Neuroblastoma
The LuDO-N Trial is a multi-centre phase II clinical trial on 177Lu-DOTATATE treatment of recurrent or relapsed high-risk neuroblastoma in children. The LuDO-N Trial builds on the experience from the previous LuDO Trial and utilises an intensified dosing schedule to deliver 2 doses over a 2-week period, in order to achieve a maximal effect on the often rapidly progressing disease. This strategy requires a readiness for autologous stem cell transplantation in all patients, but is not anticipated to increase the risk of long-term sequelae, since the cumulative radiation dose remains unchanged. The primary aim of the study is to assess...
-
[18F]DASA-23 and PET Scan in Evaluating Pyruvate Kinase M2 Expression in Patients With Intracranial Tumors or Recurrent Glioblastoma and Healthy Volunteers
This phase I trial studies how well [18F]DASA-23 and positron emission tomography (PET) scan work in evaluating pyruvate kinase M2 (PKM2) expression in patients with intracranial tumors or recurrent glioblastoma and healthy volunteers. PKM2 regulates brain tumor metabolism, a key factor in glioblastoma growth. [18F]DASA-23 is a radioactive substance with the ability to monitor PKM2 activity. A PET scan is a procedure in which a small amount of a radioactive substance, such as [18F]DASA-23, is injected into a vein, and a scanner is used to make detailed, computerized pictures of areas inside the body where the substance is used. Tumor ...
-
18FDG PET for Early Identification of Tumor Exhaust for Immunotherapy in Patients With Locally Advanced or Metastatic Non-Small Cell Bronchopulmonary Carcinoma or Melanoma
The hypothesis of this diagnostic performance study is that, for patients treated for immunotherapy-treated melanoma or NSCLC, some metabolic parameters of the 18FDG dual-point PET scan distinguish inflammatory pseudo-progression from tumor progression true and thus improve the evaluation of tumor response to immunotherapy
-
18F-DOPA II - PET Imaging Optimization
A single centre non-randomized, non-blinded phase III prospective cohort study of 18F-DOPA PET/CT imaging in specific patient populations: 1. Pediatric patients (less than 18 years old) with congenital hyperinsulinism. 2. Pediatric patients (less than 18 years old) with neuroblastoma. 3. Pediatric (less than 18 years old) or Adult patients (18 or older) with known or clinically suspected neuroendocrine tumor. 4. Adult patients (18 or older) with a clinical suspicion of Parkinson's disease or Lewy body dementia. 5. Pediatric (less than 18 years old) or Adult patients (18 or older) with brain...
-
[18F] FDOPA PET Imaging in Glioma: Feasibility Study for PET Guided Brain Biopsy
[18F]fluorodopa (3, 4-dihydroxy-6-[18F]fluoro-L-phenylalanine/ FDOPA) is an amino acid PET tracer originally developed for brain imaging in patients with movement disorders but has been found to be useful in brain tumour imaging. [18F]fluorodopa has been demonstrated to be predominantly transported by the L-type amino acid transporter without significant uptake into surrounding normal brain parenchyma with the exception of the basal ganglia. Assessing the feasibility of performing PET guided histopathology in a single and multi-site setting will be crucial in order to use PET as a planning tool for brain biopsy to detect high-grade ...