Get Involved
-
MRE Evaluation for Spinal Cord Tumor Surgery: Stiffness and Adhesion Assessment
In spinal cord tumors requiring surgical intervention, the resection difficulty is determined by two significant factors: tumor stiffness and adhesion to surrounding tissue. The stiffness of the tumor dictates the complexity of removal, while strong adhesion presents additional challenges during the surgical procedure. This clinical trial aims to assess the clinical utility of magnetic resonance elastography (MRE), in evaluating the stiffness and adhesion of spinal cord tumors and guiding surgical planning to selecting the most appropriate surgical approach for patients with spinal cord tumors.
-
MRE Scan for the Assessment of Differences in Tissue Stiffness Between Radiation Necrosis and Recurrent Glioma in Patients With Previously Treated Gliomas
This trial uses magnetic resonance elastography (MRE) to estimate tissue stiffness (hardness or softness of the tissue) in tissue that is affected by radiation treatment (radiation necrosis) and tumor tissue that has come back (recurrent) after treatment in patients with gliomas. Diagnostic procedures, such as MRE, may estimate the differences in tissue stiffness between radiation necrosis and recurrent glioma post treatment and ultimately lead to a more accurate diagnosis and/or surgery, and/or a better assessment of the disease's response to treatment.
-
MR Fingerprinting for Vestibular Schwannomas
MR Fingerprinting (MRF) will be performed in patients who will be treated with Gamma Knife radio surgery for a vestibular schwannoma before the intervention. Fifty patients will be included with a vestibular schwannoma of minimum 1cm in size. During follow-up, response of the tumor to radiosurgery will be evaluated for each patient with MRI. The aim of the study is to find patterns of vestibular schwannomas in MRF data which correlate with the type of response to radio surgery, i.e. tumor control after radiosurgery, further tumor growth despite radiosurgery, cystic transformation after radiosurgery.
-
MRI Biomarkers for Radiation-Induced Neurocognitive Decline Following SRS of Newly Diagnosed Brain Mets
Brain metastases are a source of much morbidity and mortality in adults with primary solid malignant tumors. With improvements in systemic therapy that prolong survival but have limited central nervous system penetration, patients with brain metastases are at increasing risk of developing and experiencing long-term side effects from treatment of brain metastases. The overarching goal of this study is to better understand the determinants of RT-associated changes in white and gray matter function and associated neurocognitive decline.
-
MRI Contrast Clearance Analysis for Glioma Grading and Genotyping
Gliomas are the most common primary brain tumor. Gliomas with different grades have different clinical behaviors that determine treatment planning and patient prognosis in clinical practice. In the 2021 World Health Organization (WHO) classification of tumors for the central nervous system, glioma genotyping was considered the most relevant information for neuroradiologists. The isocitrate dehydrogenase (IDH) genotype and 1p/19q codeletion status are two essential molecular markers that divide glioma into three groups: IDH wild-type, IDH mutant with 1p/19q non-codeletion, and IDH mutant with 1p/19q codeletion. MRI contrast clearance analysis (CCA) is based on T1 delayed-contrast...
-
MRI Following Stereotactic Radiosurgery (SRS) for Brain Metastases
The purpose of this study is to test whether an additional magnetic resonance image (MRI) sequence can improve the ability to distinguish radiation damage from tumor recurrence in participants with brain metastasis who have previously been treated with stereotactic radiosurgery (SRS).
-
MRI-Guided Focused Ultrasound Radiosensitization for Patients With Malignant Melanoma and Non Melanoma Skin Cancer
The objective of this study is to examine the safety profile and therapeutic efficacy of MRI-guided focused ultrasound microbubble therapy and radiotherapy in humans.
-
MRI Guided Radiotherapy and Radiobiological Data: the ISRAR Database (Irm Sequences for Radiobiological Adaptative Radiotherapy)
The MRI linac Unity is a major technological evolution in radiotherapy combining a linear accelerator with a 1.5T MRI (radiological quality). It allows to target the target volume more precisely and to adapt the daily dose distribution according to variations in the position and volume of the tumor, critical organs and the tumor response. In many studies conducted in radiology, the analysis of specific MRI sequences, particularly in radiomics, aims to characterize tumors and their sensitivity to treatment. Initial data show that in radiotherapy, it would eventually be possible to characterize the radiosensitivity of healthy and tumorous tissues. With linac 1.5T MRI, the performance...
-
MRI in High-Grade Glioma Patients Undergoing Chemoradiation
The purpose of this research study is to see if investigators can predict how brain functioning changes after radiation treatment based on PET scans and blood tests. Most participants experience at least mild decreases in their memory or attention after radiation therapy. Investigators hope that PET scans, lumbar puncture, and blood tests might help investigators predict who might have larger changes in their brain function after radiation.
-
MRI Screening for Brain Metastases Among Patients With Triple Negative or HER2+ Stage II or III Breast Cancer
The goal of this multi-centre, prospective study is to assess the frequency of asymptomatic brain metastasis in patients with stage II or III Triple Negative or HER2 positive breast cancer. The main questions it aims to answer are: 1. What proportion of patients with stage II or III Triple Negative or HER2 positive breast cancer have asymptomatic brain metastases identified on a screening contrast-enhanced magnetic resonance imaging (or computed tomography when Magnetic resonance is not possible) of the brain? 2. How do patients feel about undergoing brain imaging to screen for asymptomatic Brain metastasis? 3. What clinical and tissue-based...