Get Involved
-
Testing the Ability of AMG 232 (KRT 232) to Get Into the Tumor in Patients With Brain Cancer
This phase I trial studies the side effects and best dose of navtemadlin in treating patients with glioblastoma (brain cancer) that is newly diagnosed or has come back (recurrent). Navtemadlin may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
-
Testing the Addition of 131I-MIBG or Lorlatinib to Intensive Therapy in People With High-Risk Neuroblastoma (NBL)
This phase III trial studies iobenguane I-131 or lorlatinib and standard therapy in treating younger patients with newly-diagnosed high-risk neuroblastoma or ganglioneuroblastoma. Radioactive drugs, such as iobenguane I-131, may carry radiation directly to tumor cells and not harm normal cells. Lorlatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving iobenguane I-131 or lorlatinib and standard therapy may work better compared to lorlatinib and standard therapy alone in treating younger patients with neuroblastoma or ganglioneuroblastoma.
-
Testing the Addition of an Anti-cancer Drug, BAY 1895344, to Usual Chemotherapy for Advanced Stage Solid Tumors, With a Specific Focus on Patients With Small Cell Lung Cancer, Poorly Differentiated Neuroendocrine Cancer, and Pancreatic Cancer
This phase I trial tests the safety, side effects and best dose of BAY 1895344 when given together with usual chemotherapy (irinotecan or topotecan) in treating patients with solid tumors that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced), with a specific focus on small cell lung cancer, poorly differentiated neuroendocrine cancer, and pancreatic cancer. BAY 1895344 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as irinotecan and topotecan, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them...
-
Testing the Addition of An Anti-cancer Drug, M3814 (Peposertib), to the Usual Radiation-Based Treatment (Lutetium Lu 177 Dotatate) for Pancreatic Neuroendocrine Tumors
This phase Ib trial is to find out the best dose, possible benefits and/or side effects of peposertib when given together with lutetium Lu 177 dotatate in treating patients with neuroendocrine tumors. Peposertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell formation, so as to help block the formation of growths that may become cancer. Radioactive drugs, such as lutetium Lu 177 dotatate, may deliver radiation directly to tumor cells and not harm normal cells. Adding peposertib to lutetium Lu 177 dotatate may kill more tumor cells.
-
Testing the Addition of an Anti-cancer Drug, Triapine, to the Usual Radiation-Based Treatment (Lutetium Lu 177 Dotatate) for Neuroendocrine Tumors
This phase I trial studies the side effects and best dose of triapine when given together with lutetium Lu 177 dotatate in treating patients with neuroendocrine tumors. Triapine may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radioactive drugs, such as lutetium Lu 177 dotatate, may carry radiation directly to tumor cells and not harm normal cells. Giving triapine and lutetium Lu 177 dotatate together may work better to treat patients with neuroendocrine tumors.
-
Testing the Addition of Navitoclax to the Combination of Dabrafenib and Trametinib in People Who Have BRAF Mutant Melanoma
This phase I/II trial studies the side effects and best dose of dabrafenib, trametinib, and navitoclax and to see how well they work in treating patients with BRAF mutant melanoma or solid tumors that has spread from where it first started (primary site) to other places in the body (metastatic) or cannot be removed by surgery (unresectable). Dabrafenib and trametinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Navitoclax is in a class of medications called B-cell lymphoma-2 (BCL-2) inhibitors. It may stop the growth of tumor cells by blocking Bcl-2, a protein needed for tumor cell survival. Giving navitoclax, dabrafenib, and trametinib...
-
Testing the Addition of Radiation Therapy to Immunotherapy for Merkel Cell Carcinoma
This randomized phase II trial studies how well pembrolizumab with or without stereotactic body radiation therapy works in treating patients with Merkel cell cancer that has spread to other places in the body (advanced). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Stereotactic body radiation therapy uses special equipment to position a patient and deliver radiation to tumors with high precision. This method can kill tumor cells with fewer doses over a shorter period and cause less damage to normal tissue. Giving pembrolizumab...
-
Testing the Addition of the Immune Therapy Drugs, Tocilizumab and Atezolizumab, to Radiation Therapy for Recurrent Glioblastoma
This phase II trial studies the best dose and effect of tocilizumab in combination with atezolizumab and stereotactic radiation therapy in treating glioblastoma patients whose tumor has come back after initial treatment (recurrent). Tocilizumab is a monoclonal antibody that binds to receptors for a protein called interleukin-6 (IL-6), which is made by white blood cells and other cells in the body as well as certain types of cancer. This may help lower the body's immune response and reduce inflammation. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and...
-
Testing the Combination of the Anti-cancer Drugs XL184 (Cabozantinib) and Nivolumab in Patients With Advanced Cancer and HIV
This phase I trial investigates the side effects of cabozantinib and nivolumab in treating patients with cancer that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and who are undergoing treatment for human immunodeficiency virus (HIV). Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving cabozantinib and nivolumab may shrink or stabilize cancer in patients...
-
Testing the Combination of XL184 (Cabozantinib), Nivolumab, and Ipilimumab for Poorly Differentiated Neuroendocrine Tumors
This phase II trial studies how well the combination of XL184 (cabozantinib), nivolumab, and ipilimumab work in treating patients with poorly differentiated neuroendocrine tumors (i.e., neuroendocrine tumor that does not look like the normal tissue it arose from). Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving cabozantinib, nivolumab and ipilimumab may shrink the cancer.