Get Involved
-
Genetically Modified Cells (KIND T Cells) for the Treatment of HLA-A*0201-Positive Patients With H3.3K27M-Mutated Glioma
This phase I, first-in-human trial tests the safety, side effects, and best dose of genetically modified cells called KIND T cells after lymphodepletion (a short dose of chemotherapy) in treating patients who are HLA-A*0201-positive and have H3.3K27M-mutated diffuse midline glioma. KIND T cells are a type of treatment in which a patient's T cells (a type of immune system cell) are changed in the laboratory into KIND T cells so they will recognize certain markers found in tumor cells. Drugs such as cyclophosphamide and fludarabine are chemotherapy drugs used to decrease the number of T cells in the body to make room for KIND T cells....
-
Genetic Analysis of Pheochromocytomas, Paragangliomas and Associated Conditions
Pheochromocytomas and paragangliomas are neural crest-derived tumors of the nervous system that are often inherited and genetically heterogeneous. Genetic screening is recommended for patients and their relatives, and can guide clinical decisions. However, a mutation is not found in all cases. The aims of this proposal are to: 1) to map gene(s) involved in pheochromocytoma, and 2) identify genotype-phenotype correlations in patients with pheochromocytoma/paraganglioma of various genetic origins.
-
Genetic and Molecular Characterization of Nervous System Lesions
Primary and secondary brain tumors, the leading cause of death from cancer before the age of 35, represent a complex and heterogeneous group of pathologies with a generally poor prognosis. Knowledge of these tumors has made enormous strides thanks to access to biological samples, leading to a much more robust, reliable and precise histo-pronostic classification, but also, increasingly, to the identification of theranostic targets. Despite these advances, there is a real need to refine diagnostic and prognostic classification, identify the biological mechanisms involved in the formation and progression of these pathologies, develop...
-
Genetic and Molecular Risk Profiles of Pediatric Malignant Brain Tumors in China
Primary malignant central nervous system (CNS) tumors are the second most common childhood malignancies. Amongst, medulloblastomas are the most common malignant brain tumor of childhood and occur primarily in the cerebellum. According to molecular characteristics, medulloblastomas were classified into four subtypes: WNT, SHH, Group3 and Group4 and different prognosis were noticed between subgroups. Several genetic predispositions related to clinical outcome were also discovered and might influence the treatment of medulloblastomas as novel pharmaceutical targets. This study aims to investigate genetic and cellular profiles of...
-
Genetic Factors and Pheochromocytomas in Neoplasia Type 2
Multiple endocrine neoplasia type 2A (MEN2A) is a rare syndrome associated with activating mutations in the RET proto-oncogene, combining medullary thyroid cancer in approximately 100% of cases and pheochromocytoma in 10-80% of cases. While it is accepted that the RET mutation causes variable penetrance of pheochromocytoma in the MEN2A patient population, there is no pathophysiological explanation for the phenotypic variability among patients with the same mutation, including within the same family. The aim of this study is to better characterise the genetic factors that may explain the variable penetrance of pheochromocytoma in MEN2. To ...
-
Genetic Predisposition Testing Program for Pancreatic Neuroendocrine Neoplasms
This is a prospective observational multi-center pilot study of germline testing for participants receiving care at University of California participating locations with a new or existing diagnosis of Pancreatic Neuroendocrine Neoplasms (PanNEN). This protocol is an extension of existing Genetic Testing Station efforts at University of California, San Francisco (UCSF)
-
Genetics of Appendix Cancer Study
The GAP Study is a prospective cohort study designed to comprehensively investigate genetic variations that may contribute to cancer development among individuals diagnosed with appendix/appendiceal cancer who are ages 18+ years.
-
Genetics of Endocrine Tumours - Familial Isolated Pituitary Adenoma - FIPA
The research is aimed at identifying new predisposition genes for endocrine tumours. Our focus initially is on pituitary adenomas including growth hormone-secreting tumors (somatotrophinomas) and prolactin secreting tumours (prolactinomas), but we wish to extend work to other pituitary tumour cases/families. The recruitment process will be as follows. 1. We will recruit patients from our own Endocrine outpatient clinics and inpatient wards. In addition we will ask colleagues in other Endocrinology Departments (or other specialties such as Clinical Genetics,Pathology, General Medicine ) to identify ...
-
Genetic Testing in Guiding Treatment for Patients With Brain Metastases
This phase II trial studies how well genetic testing works in guiding treatment for patients with solid tumors that have spread to the brain. Several genes have been found to be altered or mutated in brain metastases such as NTRK, ROS1, CDK, PI3K, or KRAS G12C. Medications that target these genes such as abemaciclib, paxalisib, entrectinib and adagrasib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Genetic testing may help doctors tailor treatment for each mutation.
-
Genomic Investigation of Unusual Responders
Studies have shown that tumors from the same patient may respond very differently to the same therapeutic agents. This study aims to investigate the genetic basis of tumors that respond abnormally well or poorly to therapeutic agents in an effort to understand the fundamental genetic basis of this response. The present protocol seeks to retrospectively perform Exome, next-generation (DNA) sequencing and/or other molecular techniques on tumor samples to identify the genetic basis of a patient's exceptional response to chemotherapy.