Get Involved
-
Gallium-68 NODAGA-JR11 PECT/CT in Neuroendocrine Tumors
NODAGA-JR11 is a novel somatostatin receptor antagonist, while Gallium-68 DOTATATE is a typical somatostatin receptor agonist. This study is to evaluate the lesion detection ability of Gallium-68 NODAGA-JR11 for the diagnostic imaging of metastatic, well-differentiated neuroendocrine tumors using positron emission tomography / computed tomography (PET/CT). The results will be compared between antagonist Gallium-68 NODAGA-JR11 and agonist Gallium-68 DOTATATE in the same group of patients.
-
GB1211 and Pembrolizumab Versus Pembrolizumab and Placebo in Patients With Metastatic Melanoma and Head and Neck Squamous Cell Carcinoma
The purpose of this study is to determine the objective response of GB1211 and pembrolizumab versus pembrolizumab and placebo in patients with advance metastatic melanoma or head and neck squamous cell carcinoma.
-
G-CSF After Chemo-radiation in Patients With Glioblastoma
This research study involves the study of granulocyte colony stimulating factor (G-CSF) in patients with MGMT-methylated glioblastoma multiforme (GBM) that are undergoing standard chemoradiation. The study aims to evaluate G-CSF's effects on brain health and cognitive function. The name of the study drugs involved in this study are: - G-CSF (also called Filgrastim) - Temozolomide (TMZ), a standard of care chemotherapy drug
-
GD2-CAR T Cells for Pediatric Brain Tumours
The purpose of this study is to test the safety and efficacy of iC9-GD2-CAR T-cells, a third generation (4.1BB-CD28) CAR T cell treatment targeting GD2 in paediatric or young adult patients affected by relapsed/refractory malignant central nervous system (CNS) tumors. In order to improve the safety of the approach, the suicide gene inducible Caspase 9 (iC9) has been included.
-
GD2-SADA:177Lu-DOTA Complex in Patients With Solid Tumors Known to Express GD2
Patients with Small Cell Lung Cancer, High Risk Neuroblastoma, Sarcoma and Malignant Melanoma will be treated with GD2-SADA:177Lu-DOTA complex(The IMP is a two-step radioimmunotherapy, delivered as two separate products GD2-SADA and 177Lu-DOTA) to assess safety and tolerability
-
GD2 Specific CAR and Interleukin-15 Expressing Autologous NKT Cells to Treat Children with Neuroblastoma
This research study combines two different ways of fighting cancer: antibodies and Natural Killer T cells (NKT). Antibodies are types of proteins that protect the body from infectious diseases and possibly cancer. T cells, also called T lymphocytes, are special white blood cells that can kill other cells, including cells infected with viruses and tumor cells. Both antibodies and T cells have been used to treat patients with cancers. Investigators have found from previous research that they can put a new gene into T cells that will make them recognize cancer cells and kill them. In a previous clinical trial, investigators made artificial genes called a chimeric antigen receptors...
-
Gene Modified Immune Cells (IL13Ralpha2 CAR T Cells) After Conditioning Regimen for the Treatment of Stage IIIC or IV Melanoma or Metastatic Solid Tumors
This phase I trial studies the side effects and best dose of modified immune cells (IL13Ralpha2 CAR T cells) after a chemotherapy conditioning regimen for the treatment of patients with stage IIIC or IV melanoma or solid tumors that have spread to other places in the body (metastatic). The study agent is called IL13Ralpha2 CAR T cells. T cells are a special type of white blood cell (immune cells) that have the ability to kill tumor cells. The T cells are obtained from the patient's own blood, grown in a laboratory, and modified by adding the IL13Ralpha2 CAR gene. The IL13Ralpha2 CAR gene is inserted into T cells with a virus called a lentivirus. The lentivirus allows cells to make...
-
Generation of an Artificial Intelligence Algorithm Based on the Analysis of Melanoma Peri-scar Dermatoheliosis, as a Predictive Factor of Response to Anti-PD-1
In the last decade, the advent of immunotherapies with inhibitors of immune checkpoints, such as anti-PD-1 and anti-CTLA-4, has revolutionized the treatment of advanced or metastatic melanoma. However, the clinical benefit remains limited to a subset of patients. Identifying the patients most likely to benefit from these novel therapies (and avoiding unnecessary toxicity in non-responding patients) is therefore critical. Previous studies found a significant link between the high mutational load of a tumor (TMB) and its response to anti-PD-1 monotherapy, regardless of the histological type of cancer. Unfortunately, TMB measurement is expensive, and requires extensive sequencing...
-
Genetic Analysis of Pheochromocytomas, Paragangliomas and Associated Conditions
Pheochromocytomas and paragangliomas are neural crest-derived tumors of the nervous system that are often inherited and genetically heterogeneous. Genetic screening is recommended for patients and their relatives, and can guide clinical decisions. However, a mutation is not found in all cases. The aims of this proposal are to: 1) to map gene(s) involved in pheochromocytoma, and 2) identify genotype-phenotype correlations in patients with pheochromocytoma/paraganglioma of various genetic origins.
-
Genetic and Molecular Characterization of Nervous System Lesions
Primary and secondary brain tumors, the leading cause of death from cancer before the age of 35, represent a complex and heterogeneous group of pathologies with a generally poor prognosis. Knowledge of these tumors has made enormous strides thanks to access to biological samples, leading to a much more robust, reliable and precise histo-pronostic classification, but also, increasingly, to the identification of theranostic targets. Despite these advances, there is a real need to refine diagnostic and prognostic classification, identify the biological mechanisms involved in the formation and progression of these pathologies, develop new targeted strategies, and devise...